
Manual

roloBasic

Document version 1.0.368 as of 2012-03-09

Copyright © 2009-2012 halec. All brand names, trademarks, logos and pictures are the property of their respec-
tive owners. This document is subject to errors and changes without notice.

i

halec
Herrnröther Str. 54

63303 Dreieich
Germany

www.halec.de

http://www.halec.de/

Table of contents

I Getting started with roloBasic...1
1 What is roloBasic?...1
2 Distinguished language properties..2

2.1 Memory management...2
2.2 Exception handling..2

II Language description..3
1 General language properties...3
2 Single line commands...3

2.1 System functions..4
2.2 Variables and assignments...4
2.3 Expressions and operators...5

3 Types and values...5
3.1 Primitive data types..5
3.2 Arrays..7
3.3 Vari arrays, structures...9
3.4 Equivalence and identity..10

4 Control flow statements...11
4.1 Conditional statements...11
4.2 Iteration...12

5 Procedures and functions...13
5.1 Procedures..13
5.2 Functions...15

6 Exceptions...16

III The standard environment..17
1 Arithmetic operators...17

1.1 Addition..17
1.2 Subtraction, Multiplication..18
1.3 Division, Modulo...18

2 Relational operators..18
2.1 Identity (same)...18
2.2 Equivalence (=, <>)..19
2.3 Order relations (>,<,>=,<=)..20

3 Logic and bit manipulation..21

ii

3.1 and, or, xor..21
3.2 Boolean negation (not)..21
3.3 Negation for bit manipulation (bnot)...22
3.4 Arithmetic shift operators (<<, >>)...22

4 Array management...22
4.1 Creating mutable arrays (dim)..23
4.2 Array constructors(char, int, long, vari)...23
4.3 Array identification(isArray)...24
4.4 Array resizing (resize)...24
4.5 Inquiring array size (size)...24
4.6 Creating empty mutable arrays (reserve)..24
4.7 Using arrays as a stack(push, pop, top)...25

5 More data management commands...25
5.1 Copying of data objects (copy)..25
5.2 Inquiring the element type (type)...26
5.3 Inquiring mutability(mutable)...26

6 Constants..27
6.1 Type codes..27
6.2 Error codes..27

IV Appendix..29
1 Syntax (in EBNF)...29

1.1 Terminals..30
1.2 Operator priorities...30

2 Types, Memory usage of values..31

iii

roloBasic I Getting started with roloBasic

I GETTING STARTED WITH ROLOBASIC

Chapter I is a brief introduction of the features of roloBasic.

Chapter II explains the language features in detail.

Chapter III is the reference of the language syntax and the system functi-
ons.

1 What is roloBasic?

roloBasic is a simple programming language. It is executable on many
microcontrollers in a self-sufficient way. A PC is not required for
programming a microcontroller with roloBasic. A command line interface
can be used for directly controlling a microcontroller. roloBasic source
code can be processed and executed directly on a microcontroller.

roloBasic is implemented as a bytecode compiler and a virtual machine.
This architecture allows very different configurations. If self-sufficiency is
not important, the compiler can be omitted in the microcontroller. In this
scenario the compiler can be used separately on a PC, while on the
microcontroller only the VM is required.

roloBasic is frugal. About 32 kB flash and 1 kB RAM are enough for
running the compiler and the VM. If only the VM is required, the
requirements can be cut down even further.

roloBasic is extremely configurable. Different products can be supported
by roloBasic in a very specific way. For example, roloBasic can be used
only for flexible configurability of a product. On the other hand, a
microcontroller application can be developed entirely in roloBasic. Very
different scenarios are possible with roloBasic.

roloBasic can be configured as command line interface. This is called the
roloBasic shell. It can be used to enter connected commands, which will be
translated and executed directly thereafter.

© halec 2012 1

roloBasic I Getting started with roloBasic

2 Distinguished language properties

roloBasic is easy to learn. There are no over-complicated language structu-
res, but still roloBasic is fairly expressive.

! Hello, world! in roloBasic:
print "Hello, world!"

2.1 Memory management

roloBasic uses automatic memory management for convenient program-
ming. Arrays and strings can be created, removed and resized anytime, as
long enough free memory is available. Memory is released by clearing re-
ferences, for example by assigning the value 0 to a variable which holds an
array:

a = dim(int, 7) ! Int-Array with 7 elements. Index: 0-6
resize a, 12 ! Increase array size to 12 elements
print size(a) ! print array size
a = 0 ! delete array and release memory

2.2 Exception handling

Exception handling allows convenient programming without waiving er-
ror handling.

print a[index] ! print an array element
index = index + 1
print a[index] ! print another array element

catch ex ! catch possible exception and store in ex
 ! if ex=0, no exception has been thrown
if ex=rangeCheckError
 print "Bad Index: ", index, " Array size is: ", size(a)
endif

© halec 2012 2

roloBasic II Language description

II LANGUAGE DESCRIPTION

Before starting serious roloBasic programming, this chapter should be
read entirely.

1 General language properties

roloBasic is a line oriented language. Most commands are terminated by
an end of line. Within control structures line breaks are mandatory.

Lines can be connected using the underscore character ("_"). The compiler
will treat lines connected in such a way like a single line.

print "This is a quite long line, which is " + _
 "partitioned into two lines."

The colon (":") can be used for placing more than one command in a single
line. The compiler will treat every colon as an end of line:

if isArray(a) : print size(a) : endif

The exclamation mark designates the rest of a line as comment. Within a
comment colons are ignored.

print "Hallo!" !Comment: telling the obvious is bad style,
 !so we don't do it.

roloBasic is case insensitive: The capitalization of letters within keywords
or identifiers does not matter. We use camelCase in source code examples
for better readability, though.

2 Single line commands

A roloBasic program is defined by a sequence of commands. The most
simple commands are procedure calls and assignments.

© halec 2012 3

roloBasic II Language description

2.1 System functions

System functions are used to control input, output, and special properties
or capabilities of a microcontroller driven device. Most system functions
are device dependent and only available in specific devices.

However, the most important system functions are always available. This
set of functions is called the roloBasic standard environment, which is do-
cumented in chapter III. Many functions of the standard environment are
also explained within their scope of application.

Product specific system functions are not covered by this document. Plea-
se read the product instruction manual to learn about these functions.

Example for a system function of the standard environment:
print <value> [, <value 2> [, ...]]

Example:
=========
print "The answer of the ultimate question: ", 42

This system function outputs one or multiple values using the standard
output. The standard output could be a display, a log file, a serial inter-
face, or something completely different.

2.2 Variables and assignments

The most important roloBasic command is the assignment, which is deno-
ted by the equality sign ("="):

<target> = <expression>

The target is usually a variable. Any value can be assigned to any variable,
since roloBasic is using a dynamic type system.

It is important to understand that an assignment just assigns a new "name"
to a value. The value itself will not be copied.

Variables don't have to be declared. The roloBasic compiler will create
new variables automatically depending on usage. New variables will al-
ways be initialized with the value 0:

print newName ! Here the new Variable "newName" is created
 ! and printed. This results in printing the
 ! value 0.

© halec 2012 4

roloBasic II Language description

2.3 Expressions and operators

Within a roloBasic assignment, everything which may be placed on the
right side of the equality sign is an expression. roloBasic knows the follo-
wing types of expressions:

a = "Hallo" ! literal
b = a ! variable
a = b + " Welt" ! operator usage
b = size(a) ! function call
b = (b+1)*2 ! bracket term

The most important operators are part of the standard environment.

3 Types and values

Because types are managed automatically, there is usually no need to care
about them. But even though it is usually not noticeable, every value is al-
ways of a well defined type. In roloBasic types are assigned to values, not
to variables.

3.1 Primitive data types

roloBasic knows just three primitive types:

• char: value range 0 ... 255

• int: value range -32768 ... 32767

• long: value range -2147483648 ... 2147483647

Dynamic typing

An unambiguous type is automatically assigned to every value, for instan-
ce:

type(7) = char
type(-7) = int
type(40 * 1000) = long

The type assignment is automatic and mostly invisible. For every value al-
ways the same type will be assigned. So the expression 1001 - 1000
yields the result 1, which is of type char.

© halec 2012 5

roloBasic II Language description

Literals

In roloBasic all numeric literals are nonnegative. The "-" Operator can be
used to represent negative numbers.

The decimal numbers 0 to 2147483647 may be used as numeric literals.
Hex values are indicated by the "$" character.

a = -2147483647 - 1 ! assign the value -2147483648 to a
b = $1ff ! assign the value 511 to b

The type char is used for both characters and positive numbers in the
range of 0 to 255. Character literals are surrounded by single quotes:

'A' = 65

For character literals, the following escape sequences are available:
'\\' : backslash (\)
'\'' : single quote
'\"' : double quote
'\n' : LF (line feed)
'\r' : CR (carriage return)
'\t' : tab character
'\b' : backspace
'\f' : form feed
'\0' : 0 (zero value)
'\x??' : hex code (? represents a hex digit)
'\d???': decimal code

Unsupported basic types

In order to keep roloBasic small and economical, the type system was kept
quite simple. Only a few basic types are available.

The standard environment does not support float values, since many mi-
crocontrollers don't offer native support for it. A software float library
would be too resource demanding for small microcontrollers.

There is no boolean type as well. Truth values are represented by num-
bers: roloBasic interprets 0 as "false", and all other values as "true". All
operators which compute truth values return either 0 or 1.

There is no type for representing types. The system function
type(<value>) returns a number encoding a type. These values are gi-
ven by the system constants char, int, long and vari.

© halec 2012 6

roloBasic II Language description

3.2 Arrays

The memory management of roloBasic offers convenient array handling.
An array is just an ordinary value like a number, and can be assigned to
any variable or passed to functions. However, unlike numbers, arrays are
mutable. The system function dim creates and returns arrays.

Mutability

Probably it is not apparent that a numeric value is immutable. However,
assigning a value to a variable does not mean that the old value will be
modified – it will rather be replaced as a whole. On the other hand, arrays
can be modified without being replaced.

a = dim(int, 10) ! Create array for 10 int values
a[0] = 30000 ! modification 1: write value into array
resize a, 20 ! modification 2: expand array size to 20

! Now the following equations are considered true:

! size(a) = 20
! isArray(a) = 1 ! (1 means "true")
! type(a) = int
! mutable(a) = 1

There are other ways to create arrays as using the system function dim. Se-
veral other system functions also can return arrays. Often these arrays will
be tagged as immutable. The mutability of a value can be inquired with
the system function mutable.

It is impossible to modify immutable values. The advantage of immuta-
bles is the ability of conflict free re-use for different purposes.

Element types

In roloBasic, arrays have a fixed element type, which cannot be modified
after creation. The element type of an array determines which values the
array can hold – and how much memory the array requires per element.

Assigning an illegal value to an array element results in the exception
typeFault. The element type of an array can be inquired using the sys-
tem function type(<array>). Whether a value is an array or not, can be
inquired by isArray(<value>).

© halec 2012 7

roloBasic II Language description

Size and index range

The index range of an array always begins with 0. The last valid index of
an array a is always: size(a)-1. Any attempt to access an invalid array
index will throw the exception illegalArrayIndex.

When creating an array using dim the size has to be specified. However,
the array size still can be modified later using the command resize. Em-
pty Arrays with size 0 are legal. The maximum size of an array is only li-
mited by the availability of free memory.

Assignment is not copy

Whenever an array is being assigned to a variable, it will not be copied. In-
stead, the variable will be set as a new name for the array. In order to crea-
te a true copy of an array, the system function copy should be used.

a = dim(int, 10) ! Create an int array of size 10
b = a ! b and a are now names of the same array
b[0] = 77
print a[0] ! output 77
b = copy(a) ! assign a copy of a to b
b[0] = 42
print a[0] ! still output 77

Literals and strings

In roloBasic there is no separate type for strings. Instead, char arrays are
used for this purpose. So, a string literal is really a literal for immutable
char arrays:

s = "Hello roloBasic!"

! Now the following equations are true:
! isArray(s) = 1 !(true)
! type(s) = char
! mutable(s) = 0 !(false)
! s[0] = "H"

In string literals the same escape sequences can be used like in char lite-
rals.

The "+" operator can be used as well with numbers as with arrays. When
using it with arrays, it creates a new array which contains the concatenati-
on of the two original arrays. So this is a very convenient way of string

© halec 2012 8

roloBasic II Language description

concatenation. However, it is not very efficient. It is better to use the sys-
tem function append for this purpose. To append single values to an ar-
ray, the system function push can be used.

Creating mutable copies

Hint: The system function copy always creates mutable arrays. Whenever
a modified version of an immutable array is required, it can be copied
with copy and modified accordingly.

roloBasic also offers array constructors. These can be invoked with an arbi-
trary number of arguments:

a = int(0,1,2,3) ! creates an immutable int array with size 4
 ! containing the values 0,1,2,3
b = copy(long()) ! creates an empty mutable long array

Hint: The compiler tries to make computations in advance (at compile
time), if possible. For example, it pre-computes array creation with array
constructors, and array concatenation. All pre-computed arrays are immu-
table. Pre-computation of system functions enabled for it will succeed, if
all parameters are immutable and available at compile time.

The advantage of pre-computation and immutable data is memory econo-
my. The disadvantage is, that some care has to be taken for it while pro-
gramming. The most efficient way for creating a pre-initialized mutable
array is using the copy system function. A less efficient way: Whenever a
variable occurs within an expression, it will generally be computated at
runtime only, and the result will be mutable.

a = copy(char(0,1,2,3,4,5,6,7)) ! Efficient way for
 ! initializing a mutable
 ! char array

c = 0 ! Inefficient way for doing so
b = char(c,1,2,3,4,5,6,7) ! ...

3.3 Vari arrays, structures

In roloBasic there exists another specialized array type, which can hold
any kind of values – even other arrays.

This array type is called vari.

© halec 2012 9

roloBasic II Language description

In roloBasic, vari arrays can be used as structures. Always when structures
are mentioned, we are really talking about vari arrays. Using vari arrays,
complex nested or even cyclic data structures can be created easily:

a = dim(vari,0)
push a, 4215 ! fill the array a value by value
push a, "Königswasser"
push a, int(1,2,3)

Vari arrays can be created using array constructors, too:
a = vari("A", "few", "strings", dim(char,2))

! Now the following equations are true:
! a[2] = "strings"
! a[2][0] = 'S'
! mutable(a) = 1 ! (mutable because of dim call)

A vari array slot works like a variable. An assignment to an array slot is
not a copy. This is why chained or cyclic data structures can easily be crea-
ted:

a = copy(vari(1,0))
b = copy(vari(2,a))
a[1] = b

! now the following equations are true:
! a[1][1][0] = 1
! a[1][1][1][0] = 2

3.4 Equivalence and identity

The system function same checks two values for identity. This is a very
strong criteria. Two numbers with the same value are always identical, but
an array is only identical to itself. Two individually created arrays are ne-
ver identical, even if they contain the same values. An exception is when
two immutable arrays with same values are created. In this case, it can
happen that the array is only created once – so it will be identical to itself,
of course.

The relational operator "=" checks two values for equivalence. This is a
weaker criteria. Two equally sized arrays are equivalent, if they share
identical values in the same order. This is even true if the element type of
the arrays is different. For example, an int array can be equivalent to a
long array:

© halec 2012 10

roloBasic II Language description

! Same numeric values are always identical:
! e.g. same(10,10) = 1

a = vari(1,2)
b = int(1,2)
c = a

! now the following equations are true:
! same(a,b) = 0 ! a and b are not identical...
! a = b ! ...but equivalent
! same(a,c) = 1 ! a and c are Names for the same
! ! array, so same(a,c) = 1

a1 = vari(a,3) ! Now we create two nested structures holding
b1 = vari(b,3) ! the same values

! now the following equations are true:
! a1 <> b1 ! a1 and b1 are neither equivalent nor identical

This may be surprising at first glance. However, the elements of a1 and
b1 are not identical, so a1 and b1 are not equivalent: a1 and b1 can be
distinguished just by comparing their elements using same:

! clearly the following equations are true:
! same(a1[0],a) = 1
! same(b1[0],a) = 0
! thus a1 and b1 are not equivalent.

4 Control flow statements

roloBasic has only few control flow statements. The GOTO statement,
well-known from other basic dialects, is not implemented in roloBasic.

4.1 Conditional statements

roloBasic uses the IF-Statement for branching. The associated keywords
are if, endif, else and elseif. Directly after if and elseif
an expression followed by a line break is expected. After else and
endif a line break is expected, too:

if isArray(x) or isArray(y)
 print "x or y is an array."
elseif x>y
 print x, " is greater than ", y
elseif x=y
 print x, " equals ", y
else
 print x, " is smaller than ", y

© halec 2012 11

roloBasic II Language description

endif

4.2 Iteration

Iteration is usually much more efficient as recursion.

For loop

The for loop is convenient, but not the most efficient control statement for
iteration:

a = "Hello roloBasic!"
b = dim(char,0)

for i=0 to 4
 push b, a[i]+1
next

for i=size(a)-1 downto 0 step -2
 push b, a[i]
next

! Now we have: b = "Ifmmp!iaoo le"

Watch out: The step and stop values are recalculated every iteration.

The keyword downto can be used to decrement the loop counter. The
keyword step is required for increment values different from 1 or -1.

Do loop

Die infinite loop looks like this:
do
 println "... till hell freezes over..."
loop

The do can be followed by the keyword while and an entry condition.
The loop can be followed by the keyword until and an exit condition.
Any loop can be aborted by the break command.

! Loop with 3 exit paths:
do while y < x*x
 y = getnextvalue(y)
 if y = check
 break
 endif
loop until y < max

© halec 2012 12

roloBasic II Language description

5 Procedures and functions

Frequently used command sequences or calculations should be implemen-
ted as a procedure or function.

5.1 Procedures

A procedure definition is initiated with the keyword procedure, follo-
wed by the procedure name and a comma separated list of formal parame-
ters. A line break at the end of this list finishes the procedure head.

The subsequent commands define the body of the procedure. The proce-
dure is finished by the keyword end.

procedure printarray a
 if isarray(a)
 print "("
 do
 printarray a[i] : i=i+1
 if i=size(a) : break : endif
 print ","
 loop
 print ")"
 else
 print a
 endif
end

printarray "Hello" ! --> (72,101,108,108,112)

In roloBasic, Parameters are always value parameters. They work like lo-
cal variables, which are initialized by the actual parameters every time the
procedure is called.

Local variables are always initialized by 0 every time the corresponding
procedure is called. Within a procedure, all variable references are consi-
dered local by default. So in the example code, the variable i is created
automatically as a local variable and initialized with the value 0 every
time the procedure printarray is called.

Within a procedure, global variables can be accessed using the prefix key-
word global:

© halec 2012 13

roloBasic II Language description

procedure log message
 append global logstring, message
end

log "Hello"
log ", "
log "roloBasic"
log "!"

! --> logstring = "Hello, roloBasic!"

Procedures are ordinary values, like arrays. A procedure definition works
by creating a vari array which contains a representation of the procedure,
and assigning it to a variable, whose name is given by the procedure
name. So, procedures may be copied, stored in vari arrays or used as actu-
al parameters for other procedures.

Watch out for the following characteristics:

• In order to call a procedure, it has to be stored within a variable. The ro-
loBasic syntax doesn't allow calling a procedure which is stored as array
element directly. However, the procedure may be copied into a variable
in order to be called.

• Within a procedure, variable references are local by default. In contrast,
procedure calls are global by default. So, a procedure call within a pro-
cedure will access a global variable, which contains the procedure to be
called. In order to call a procedure which is stored within a local varia-
ble, the prefix keyword local has to be used.

• At least one space character is required between a procedure name and
its first parameter.

procedure test1
 print "hello"
end

procedure test2 p
 proc = p[0] ! copy procedure from p[0] into local var.
 local proc ! call the procedure
end

a = dim(vari, 1) ! create vari array with a single element
a[0] = test1 ! copy procedure test1 into array a
test2 a ! call procedure test with actual parameter a

© halec 2012 14

roloBasic II Language description

When execution arrives the end of a procedure body, the procedure is ter-
minated. It is also possible to terminate a procedure at any point within its
body using the command return.

A procedure has no direct return value. However, values may be returned
by using global variables. It is also possible to pass an array as actual para-
meter, and modify it within the procedure. So, an array may be used as a
way for returning several values from a procedure call.

5.2 Functions

A function works almost like a procedure. However, a function always re-
turns a value. Furthermore, the parameter list of a function is always deli-
mited by parentheses.

The return value may be passed using the command
return <expression>. Within a function – in contrast to a procedure –
the keyword return always has to be followed by the return value. If
execution arrives the end of a function body without coming across a
return command, the value 0 will be returned.

Functions are values, and exactly like procedures, they may be assigned to
variables or arrays elements. However, unlike procedures, functions con-
tained by array elements may be called directly.

function fib(x)
 if x<=0
 return 0
 elseif x=1
 return 1
 else
 return fib(x-2) + fib(x-1)
 endif
end

procedure test2 p
 print p[0](10) ! call the function contained in p[0]
end

print fib(10) ! print 55
a = dim(vari, 1) ! create vari array with a single element
a[0] = fib ! copy function fib into array a
test2 a ! call procedure test2 with actual parameter a
 ! --> will print 55, too

© halec 2012 15

roloBasic II Language description

6 Exceptions

In roloBasic, a runtime errors always throws an exception, which can be
caught using the catch command. An uncaught exception results in pro-
gram termination, furthermore an error message containing the exception
value will be generated.

The throw command is used for throwing user exceptions. These work
exactly like system exceptions. If the value of a system exception is passed
to the throw command, there will be no difference between the user gene-
rated exception and an original system exception.

i = 5
a = 1000
do
 a = a div i
 i = i - 1
loop

catch ex
if ex = divisionByZero
 print a
else
 throw ex ! If it was a different exception, we just
 ! throw it again.
endif

The catch command must be followed by a single variable name. It will
catch any exception which is "passing by" and assign it to this variable. If
a catch command is arrived without any exception, the value 0 will be
assigned. So, exception handling will usually look like this:

catch ex
if ex
 ... error handling ...
endif

The throw command throws an exception. It accepts an arbitrary value
as parameter, which will be assigned to the exception. Even nested data
structures may be used as value of an exception. However, if an exception
is not caught by a catch command, the system will only output single
numeric values within the resulting error message.

© halec 2012 16

roloBasic III The standard environment

III THE STANDARD ENVIRONMENT

All operators, procedures, functions and constants specified within this
section are integral parts of roloBasic. Their names are reserved, and can-
not be used as variable names. It is not possible to assign new values to
these names. System functions and procedures can be called exactly like
user defined ones. However, they do not represent values, so they cannot
be passed as parameters or assigned to variables or array elements.

1 Arithmetic operators

Small values need less memory as big values. This memory "micro mana-
gement" for numeric values works fully automatic, so the user doesn't
have to care about it. The user may assume having 32 bit values all the
time, with values within the range -2147483648 ... 2147483647. However,
numeric overflows beyond this range won't be detected. So the expression
2147483647 + 1 yields the result -2147483648.

1.1 Addition
value = a + b

Adds two values.

• Parameters: Two numeric values or two arrays with same element type.
The following condition must hold:
(not isarray(a) and not isarray(b)) or _
isarray(a) and isarray(b) and type(a)=type(b)
Violation of this condition triggers the exception typeFault.

• Return value: Result of the addition. If the parameters are arrays, a new
array of the same element type will be created, which contains the
concatenation of both parameter arrays.
("hi"+"ho" = "hiho")

© halec 2012 17

roloBasic III The standard environment

1.2 Subtraction, Multiplication
value = a - b
value = a * b

Operators for substraction and multiplication.

• Parameters: Two numeric values. The following condition must hold:
not isarray(a) and not isarray(b)
Violation of this condition triggers the Exception typeFault.

• Return Value: Result of the computation.

1.3 Division, Modulo
value = a div b
value = a mod b

Calculates the integer division and the remainder accordingly.

• Parameters: Two numeric values. The following condition must hold:
not isarray(a) and not isarray(b)
Violation of this condition triggers the Exception typeFault. If the va-
lue of the second parameter is 0, the Exception divisionByZero will
be thrown.

• Rückgabewert: Result of the computation.

2 Relational operators

A common characteristic of all relational operators in roloBasic is that they
are not recursive. Nested structures will only be examined at top level. Ar-
ray elements containing other arrays will only be compared in terms of
identity.

All comparisons result in a truth value. roloBasic uses the values 0 (as "fal-
se") and 1 (as "true") to represent truth values. roloBasic interprets all va-
lues unequal 0 as "true".

2.1 Identity (same)
value = same(a,b)

© halec 2012 18

roloBasic III The standard environment

Determines the Identity of two values, that is, if a and b are the same
value. This is always true for two numeric values if they represent the
same number.

However, an array is only identical to itself. Two seperately created arrays
with the same content are not identical.

If a is an array and same(a,b) holds, changing an element of a will
lead to the same change in b, since a and b are just different names of
the same data object.

Assigning a new value to a will not lead to any change in b because in
this case just the meaning of the name a is modified. The data object for-
merly assigned to a is not modified.

• Parameters: Two arbitrary values.

• Return value: 0 or 1

2.2 Equivalence (=, <>)
value = a = b

Determines the equivalence of two values.

value = a <> b

Determines if two values are not equivalent.

The following assertion always holds: same(a=b, not (a <> b))
In roloBasic, two arrays are equivalent, iff they are of same length and all
contained values are pairwise identical.

The following function computes the equivalence of two values by using
the system function same:
function equivalent(a,b)
 if not isarray(a)
 return same(a,b)
 elseif same(size(a), size(b))
 for i=0 to size(a)-1
 if not same(a[i], b[i])
 return 0
 endif
 next
 return 1

© halec 2012 19

roloBasic III The standard environment

 else
 return 0
 endif
end

The assignment operator "=" uses the same symbol like the equivalence
operator, however this doesn't matter much.

After an assignment
a = b

always holds: same(a,b). So, an assignment does more than just esta-
blishing equality. In contrast, after this assignment, a and b are names
of the same data object.

• Parameters: Two arbitrary values.

• Result value: 0 or 1

2.3 Order relations (>,<,>=,<=)
value = a > b
value = a < b
value = a >= b
value = a <= b

These operators all define the same order. Therefore always holds:
(a < b) = (b > a)
(a < b) = (not (a >= b))
(a < b) = (not (b <= a))

Strictly speaking, they define two orders:

• Numerical order: The order relations can be used to compare numeric
values.

• Lexicographical order, relating to arrays containing numerical values.

When comparing arrays using order relations, the arrays must contain
only numeric values. Failing this condition triggers the exception
typeFault.

Anyhow, this means that strings may be compared using order relations,
since they are represented by char arrays, and char is a numeric type in ro-
loBasic. Therefore holds:

© halec 2012 20

roloBasic III The standard environment

"dwarf" < "dwelling"
• Parameters: Two numeric values, or two arrays containing only numeric

values.

• Result Value: 0 or 1

3 Logic and bit manipulation

All logic operators except not interpret numbers as bit fields. They can
also be used for boolean terms, however, only bit 0 will be used in this
case.

This is easier as it sounds:

• For writing boolean terms, the operators and, or, xor and not
may be used.

• For bit field manipulation, the operators and, or, xor, <<, >> and
bnot maybe used. All numeric values should be regarded as 32 bit va-
lues in two's complement representation.

3.1 and, or, xor
value = a and b
value = a or b
value = a xor b

bitwise logic operations in 32 bit two's complement. May also be used as
boolean operators.

• Parameters: Two numeric Values. The computation always works as if
all values were 32 bit, even if the input values are small numbers.

• Return value: Result of the bit manipulation.

3.2 Boolean negation (not)

value = not a

Boolean negation.

• Parameters: A numeric value.

© halec 2012 21

roloBasic III The standard environment

• Return value: If a=0, the return value is 1, otherwise it is 0.

3.3 Negation for bit manipulation (bnot)
value = bnot(a, type)

Not operation for manipulation of bit fields. The value a is regarded as
bit field of the size of the type type. This is 8 bits for the type char, 16
bits for int and 32 bits for long. All bits in this field will be negated.
The result of the operation is a numerical value of the specified type.

• Parameters: A numeric value and a numerical type code.

• Return value: Result of the bit field negation.

3.4 Arithmetic shift operators (<<, >>)
value = a << b

Shifts all bits of a by b steps to the left. This is equivalent to a multiplica-
tion of a with 2b.

value = a >> b

Shifts all bits of a by b steps to the right. The most significant bit (and
hence the sign) is retained.

• Parameters: Two numeric values.

• Return Value: Result of the shift operation.

4 Array management

Arrays are the only kind of data structures in roloBasic, and they are very
efficient. Arrays can be created at any time, as long enough free memory is
available. The memory taken by an array can be deallocated by simply
"forgetting" the array, by making sure no more access to the array is possi-
ble. Arrays can be resized anytime, the maximum array size is only boun-
ded by the amount of free memory available. Arrays can also be empty,
and therefore contain zero elements. The array content is retained when

© halec 2012 22

roloBasic III The standard environment

resizing, except elements removed due to downsizing. When upsizing,
new elements are initialized by 0.

Arrays have a fixed element type. The possible element types are:
char, int, long, vari

The element type determines which values are allowed to be stored in an
array. char, int and long permit numeric values within the corre-
sponding range only. vari allows arbitrary values, even arrays. Therefo-
re, vari arrays are often called structures.

These element type names are implemented as system constants encoding
a numeric code which represents the corresponding type. However, they
can also be used as array constructors, and be called like a function with
variable argument list. The parameters of the constructor call determine
the initial content of an array created this way. Array constructors create
immutable arrays, if all values are known at compile time.

4.1 Creating mutable arrays (dim)
value = dim(type, size)

Creates a new, mutable array of type type and size size. All Array ele-
ments are initialized as 0.

• Parameters: A numeric type code and a numeric size value.

• Return value: The newly created array.

• Exceptions: outOfMemory.

4.2 Array constructors(char, int, long, vari)
value = char(...)
value = int(...)
value = long(...)
value = vari(...)

Creates a preinitialized immutable array with the respective element type.

• Parameters: Arbitrary list of values. The values must comply with the
element type. The list also may be empty in order to create an empty
immutable array.

© halec 2012 23

roloBasic III The standard environment

• Return value: The newly created immutable array.

• Exceptions: outOfMemory.

4.3 Array identification(isArray)
value = isArray(a)

Determines whether a is an array or not.

• Parameters: An arbitrary value a.
• Return value: 1, if a is an array. Otherwise 0.

4.4 Array resizing (resize)
resize a, newSize

Alters the size (=Number of elements) of the array a to newSize. New-
ly created array elements are initialized by 0. Mutable arrays may be resi-
zed anytime. However, immutable arrays cannot be resized. The least pos-
sible array size is 0. The maximum size is only determined by the amount
of free memory available.

• Parameters: An array and a numeric value.

• Exceptions: outOfMemory.

4.5 Inquiring array size (size)
value = size(a)

Determines the number of data elements of a. If a is an array, size(a)
is the current number of data elements. If a is a numeric value,
size(a) = 1.

• Parameters: An arbitrary value, usually an array.

• Return value: The number of data elements of a.

4.6 Creating empty mutable arrays (reserve)
value = reserve(type, size)

© halec 2012 24

roloBasic III The standard environment

Creates a mutable empty array of type type, which is prepared for very
efficient resizing up to size elements. The reserve command is espe-
cially useful for creating arrays which are going to be used as a stack. (Re-
sizing beyond size is still possible. And arrays which are created with
dim can be used as a stack too.)

• Parameters: A numeric type code and a numerci value.

• Rückgabewert: The newly created empty array.

• Exceptions: outOfMemory.

4.7 Using arrays as a stack(push, pop, top)
push a, x
value = pop(a)
value = top(a)

In roloBasic arrays can be used as a stack.

• The command reserve is useful for preparing an empty stack.

• The command push appends the value x as new last element to an
array a and increases the array size by 1.

• The function top determines the last Element of an array a.

• The funktion pop reads the last Element and removes it from an array
a.

• Parameters: a must be an array. x may be an arbitrary value which is
admissible as array element of a.

• Return value (only for pop and top): The last element of the array a.

• Exceptions: outOfMemory.

5 More data management commands

Some additional commands support the usage of roloBasic data objects.

5.1 Copying of data objects (copy)
value = copy(a)

© halec 2012 25

roloBasic III The standard environment

Creates a copy of a.

If a is an array, the copy will be mutable.

Only a shallow copy is created. The copy contains exactly the same ele-
ments as the original. The elements of an array will not be copied, but assi-
gned.

• Parameters: a may be an arbitrary value, but basically only the use of
array is reasonable.

• Return value: A copy of a.
• Exceptions: outOfMemory.

5.2 Inquiring the element type (type)
value = type(a)

Determines the element type of a. If a is a numeric value, its element
type is only dependent on its value. Therefore holds:

! type(0) = char
! type(256) = int
! type(-1) = int
! type(100000) = long

If a is an array, the element type which was specified by its creation(e.g.
with dim) will be returned.

• Parameters: An arbitrary value

• Return value: The numeric element type code representing the element
type of a.

5.3 Inquiring mutability(mutable)
value = mutable(a)

Determines whether a is mutable or immutable. Immutable data objects
cannot be modified. So, immutable arrays cannot be resized, and it is not
possible to assign values to array elements of immutable arrays.

• Parameter: an arbitrary value

© halec 2012 26

roloBasic III The standard environment

• Return value: 1 if a is mutable, else 0.

6 Constants

In roloBasic several global system constants are defined. The names of the-
se constants are reserved and cannot be used as variable names. These sys-
tem constants contain numeric values, for example for encoding types and
exceptions.

6.1 Type codes

roloBasic defines codes for 4 types:
char
int
long
vari

These constants are codes for the basic types of roloBasic. They can be
used for comparing types or specifying element types of arrays. The type
vari has an exceptional position, as it can only be used as element type
of arrays.

! Example:
if type(a) = char and isArray(a)
 print "a ist a string"
endif

6.2 Error codes

Whenever a runtime error occurs, an exception will be thrown, which is
represented by a numeric value. These values are defined by the following
system constants:

outOfMemory ! Not enough free memory available

rootstackOverflow ! Internal system error
nullpointerAccess ! Internal system error

valueRange ! Range overflow. For example by
 ! assignment of too large values arrays of
 ! element type char or int, or by calling

© halec 2012 27

roloBasic III The standard environment

 ! system functions with restricted value
 ! range for their parameters.

divisionByZero ! Division by 0. May happen with div, mod

argumentFault ! Illegal number of parameters when calling
 ! a system function

illegalFunction ! A variable was used as name for a function
 ! within a function call, although it does
 ! not contain a valid function.
 ! Also applies for procedure calls.

indexRange ! Index range overflow during array access

typeFault ! Type error.
 ! e.g. when calling a system function which
 ! excepts a numeric value as argument with
 ! an array.

! Example:

print "Integer Quotient: ", a div b
print "Remainder: ", a mod b
catch x
if x = divisionByZero
 print "Division by zero!"
endif

© halec 2012 28

roloBasic IV Appendix

IV APPENDIX

Tables and formal specifications for roloBasic.

1 Syntax (in EBNF)
Program = { (Statement | Procedure | Function) NewLine } .
Procedure = "procedure" Ident FormalParams NewLine Block "end" .
Function = "function" Ident "(" FormalParams ")" NewLine
 Block "end".

Block = { Statement NewLine } .
Statement = Assignment | ProcCall | Do | For | If .
Assignment = Lvalue "=" Expression .

VarAccess = ["global" | "local"] Ident .
Lvalue = VarAccess | ArrayAccess .
ArrayAccess = Expression "[" Expression "]" .

Expression = FunCall | UnaryOperation | BinaryOperation |
 Literal | VarAccess | (Expression) .
UnaryOperation = UnaryOperator Expression .
BinaryOperation = Expression BinaryOperator Expression .

ProcCall = Ident ActualParams .
FunCall = Ident "(" ActualParams ")" .
FormalParams = [{ Ident "," } Ident] .
ActualParams = [{ Expression "," } Expression] .

Do = "do" ["while" Expression] NewLine
 Block
 "loop" ["until" Expression] .

For = "for" Ident "=" Expression "to" Expression
 ["step" Expression] NewLine
 Block
 "next" .

If = "if" Expression NewLine
 Block
 { "elseif" Expression NewLine Block }
 ["else" NewLine Block]
 "endif" .

© halec 2012 29

roloBasic IV Appendix

1.1 Terminals

• Ident: Identifier. Only the characters A-Z, 0-9, and underscore ("_") may
be used. May not begin with a digit.

• NewLine: Line Break or colon (":").

• Literal: Representation for a value constant. Examples:
'x' "Hello" -333 0.127

• UnaryOperator: Unary operator, e.g. negation.

• BinaryOperator: Binary operator, e.g. addition.

Within string literals the backslash character ("\") is used to represent spe-
cial characters, e.g. : \" \\ \n \t \064

1.2 Operator priorities

Operator symbol Priority Remark

- , not 8 unary

* , div , mod 7 mod, div: yields integer value

+ , - 6 + may also be used with strings,
arrays

<< , >> 5 shift operations

< , <= , > , >= 4 also compares strings, arrays

= , <> 3 also compares strings, arrays

and 2 also works bitwise

xor, or 1 also works bitwise

© halec 2012 30

roloBasic IV Appendix

2 Types, Memory usage of values

Type Memory usage
(bytes)

As array element
(bytes)

char 2 1 (in char arrays)

int 4 2 (in int arrays)

long 6 4 (in long arrays)

array of char (string) 2+size(...) 4 + size(...)

array of int 2+size(...)*2 4 + size(...)*2

array of long 2+size(...)*4 4 + size(...)*4

array of vari (structure) 2+size(...)*2 4 + size(...)*2

© halec 2012 31

	i Getting started with roloBasic
	1 What is roloBasic?
	2 Distinguished language properties
	2.1 Memory management
	2.2 Exception handling

	ii Language description
	1 General language properties
	2 Single line commands
	2.1 System functions
	2.2 Variables and assignments
	2.3 Expressions and operators

	3 Types and values
	3.1 Primitive data types
	Dynamic typing
	Literals
	Unsupported basic types

	3.2 Arrays
	Mutability
	Element types
	Size and index range
	Assignment is not copy
	Literals and strings
	Creating mutable copies

	3.3 Vari arrays, structures
	3.4 Equivalence and identity

	4 Control flow statements
	4.1 Conditional statements
	4.2 Iteration
	For loop
	Do loop

	5 Procedures and functions
	5.1 Procedures
	5.2 Functions

	6 Exceptions

	iii The standard environment
	1 Arithmetic operators
	1.1 Addition
	1.2 Subtraction, Multiplication
	1.3 Division, Modulo

	2 Relational operators
	2.1 Identity (same)
	2.2 Equivalence (=, <>)
	2.3 Order relations (>,<,>=,<=)

	3 Logic and bit manipulation
	3.1 and, or, xor
	3.2 Boolean negation (not)
	3.3 Negation for bit manipulation (bnot)
	3.4 Arithmetic shift operators (<<, >>)

	4 Array management
	4.1 Creating mutable arrays (dim)
	4.2 Array constructors(char, int, long, vari)
	4.3 Array identification(isArray)
	4.4 Array resizing (resize)
	4.5 Inquiring array size (size)
	4.6 Creating empty mutable arrays (reserve)
	4.7 Using arrays as a stack(push, pop, top)

	5 More data management commands
	5.1 Copying of data objects (copy)
	5.2 Inquiring the element type (type)
	5.3 Inquiring mutability(mutable)

	6 Constants
	6.1 Type codes
	6.2 Error codes

	iv Appendix
	1 Syntax (in EBNF)
	1.1 Terminals
	1.2 Operator priorities

	2 Types, Memory usage of values

